DSIF contributes to transcriptional activation by DNA-binding activators by preventing pausing during transcription elongation
نویسندگان
چکیده
The transcription elongation factor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) regulates RNA polymerase II (RNAPII) processivity by promoting, in concert with negative elongation factor (NELF), promoter-proximal pausing of RNAPII. DSIF is also reportedly involved in transcriptional activation. However, the role of DSIF in transcriptional activation by DNA-binding activators is unclear. Here we show that DSIF acts cooperatively with a DNA-binding activator, Gal4-VP16, to promote transcriptional activation. In the absence of DSIF, Gal4-VP16-activated transcription resulted in frequent pausing of RNAPII during elongation in vitro. The presence of DSIF reduced pausing, thereby supporting Gal4-VP16-mediated activation. We found that DSIF exerts its positive effects within a short time-frame from initiation to elongation, and that NELF does not affect the positive regulatory function of DSIF. Knockdown of the gene encoding the large subunit of DSIF, human Spt5 (hSpt5), in HeLa cells reduced Gal4-VP16-mediated activation of a reporter gene, but had no effect on expression in the absence of activator. Together, these results provide evidence that higher-level transcription has a stronger requirement for DSIF, and that DSIF contributes to efficient transcriptional activation by preventing RNAPII pausing during transcription elongation.
منابع مشابه
Transcriptional pausing caused by NELF plays a dual role in regulating immediate-early expression of the junB gene.
Human 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) negatively regulate transcription elongation by RNA polymerase II (RNAPII) in vitro. However, the physiological roles of this negative regulation are not well understood. Here, by using a number of approaches to identify protein-DNA interactions in vivo, we show that D...
متن کاملPhosphorylation of histone H3 at Ser10 facilitates RNA polymerase II release from promoter-proximal pausing in Drosophila.
The Drosophila JIL-1 kinase is known to phosphorylate histone H3 at Ser10 (H3S10) during interphase. This modification is associated with transcriptional activation, but its function is not well understood. Here we present evidence suggesting that JIl-1-mediated H3S10 phosphorylation is dependent on chromatin remodeling by the brahma complex and is required during early transcription elongation...
متن کاملCrystal structure of the human transcription elongation factor DSIF hSpt4 subunit in complex with the hSpt5 dimerization interface.
The eukaryotic transcription elongation factor DSIF [DRB (5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole) sensitivity-inducing factor] is composed of two subunits, hSpt4 and hSpt5, which are homologous to the yeast factors Spt4 and Spt5. DSIF is involved in regulating the processivity of RNA polymerase II and plays an essential role in transcriptional activation of eukaryotes. At several euka...
متن کاملDSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs.
We report the identification of a transcription elongation factor from HeLa cell nuclear extracts that causes pausing of RNA polymerase II (Pol II) in conjunction with the transcription inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). This factor, termed DRB sensitivity-inducing factor (DSIF), is also required for transcription inhibition by H8. DSIF has been purified and is co...
متن کاملUp-regulation of P-TEFb by the MEK1-extracellular signal-regulated kinase signaling pathway contributes to stimulated transcription elongation of immediate early genes in neuroendocrine cells.
The positive elongation factor P-TEFb appears to function as a crucial C-terminal-domain (CTD) kinase for RNA polymerase II (Pol II) transcribing immediate early genes (IEGs) in neuroendocrine GH4C1 cells. Chromatin immunoprecipitation indicated that in resting cells Pol II occupied the promoter-proximal regions of the c-fos and junB genes, together with the negative elongation factors DSIF and...
متن کامل